

New Operating System

Version 1.0

For the

DSE VZ200/300 Computer’s

Page 2 New Operating System 1.0

Contents

1 Introduction………………………………………………..

1.1 What are the aims of the project………………………..

1.2 The Vision…………………………………………………

1.3 The BASIC’s………………………………………………

1.4

Page 3 New Operating System 1.0

Introduction

What are the aims of this Project?

The main aim of this project is to allow easier access to any peripheral devices attached to the VZ by any piece of software already

written for the VZ with little or no modification.

The main assumptions before you commence this project are:-

1) You have reasonable knowledge of Z80 Assembly Language Programming.

2) You own a VZ with at least a 16K RAM Expansion.

3) You have time to do the work required.

The Vision

A VZ Computer with a maximum of 4 Megabytes of memory (available to all programs - even BASIC Programs), Multiple Disk

Drives attached (including a 720K 3.5 inch Drive), Enhanced Keyboard, optional RAM Disk Software, A Real-Time Clock keeping

track of the Date and Time allowing Alarm Features etc, a Mouse or other pointing device, an 80 column display for better viewing of

data, and to round off the set-up - a Sound Blaster Card allowing you to record and play back sounds from various input devices (TV,

Video, Radio, Stereo etc).

We are aiming High!

The BASIC’s

All components in NOS are designed to be replaceable, so that you may configure your system in any way you would like. The system

has been designed to emulate the DOS System of the popular IBM Personal Computers. That is, it will provide similar functionality

but will not neccessarily be compatible. NOS will consist of nine basic components:-

B: BOOT.EXE This is the NOS Initialisation Program.

B: MEMORY This is the Memory Manager and will look after all memory allocation regardless of its location.

B: PROCMAN This is the Process Manager and looks after the loading/executing of all Programs.

B: SCRNMAN This is the Screen/Display Manager and looks after the different Graphics Modes etc.

B: DISKMAN This is the Disk Manager and shields all applications from the native Disk Drive Commands.

B: PRINTMAN This is the Print Manager and looks after the translation of control codes and provides a Printer Spooler.

T: CONFIG This file contains the Peripheral Device Driver installation/configuration information.

B: COMMAND This is the Command processor and contains the basic reserved words allowed at the command line.

T: AUTOEXEC This file contains any other Programs the User may wish to load when starting NOS.

Notes/Assumptions:

1) The files listed above must all live on the same diskette - which will from this point forth be referred to as the NOS Boot Disk.

2) The NOS Boot Disk is a standard VZ Diskette and as such can only be read from a VZ Disk Drive. This means that we will have

two limitations: 80K Maximum Boot Disk size and also we cannot boot from a different type of Disk Drive yet. These are not

major hurdles and will be resolved in the future.

Page 4 New Operating System 1.0

The Initialisation Process (BOOT.EXE)

As mentioned above, the entry point into NOS will be via BOOT.EXE which, as with standard VZ disk software, will be started with

the usual BRUN”BOOT.EXE”. Once loaded, the Boot program will perform some minor tasks such as setting up internal pointers and

reserving permanent memory areas for itself. It will then commence to load the other programs from the boot disk in the order listed

above. The loading order is essential as some of the processes reply upon the previous components being there to operate correctly.

Below is the pseudo code for the Boot process, see Appendix A for the executable version.

BeginProgram ‘Boot’

Origin: 40960 ; Origin = A000H

 Disable Interrupts ; Prevent the System from having problems

 ; whilst initialisation occurs.

 Reserve 25 Bytes for the System Information Frame (SIF) ; See later for further details

 at locations 31465 to 31489

 Initialise SIF: ; Values are for NOS 1.0 only.

 Store NOS Version Description Pointer ; = 31490

 Store High Order NOS Version ; = 1

 Store Low Order NOS Version ; = 0

 Initialise the System Flags ; = 0

 Initialise the Max Process ID ; = 255

 Set the Base System Stack Pointer ; = 31597 + 40 (Default Stack Size)

 Set the Top System Stack Pointer ; = 31597

 Set the Current System Stack Pointer ; = Base System Stack Pointer

 Store IM1 Table Pointer ; = 31507

 Initialise IM1 Function Count ; = 0

 Store the Critical Error Handler Address ; = 31636

 ; All following addresses are known to the Boot Program only. Any Process wishing to use the following

; information should go via the SIF to retain compatibility with future versions of NOS.

Store Version Description String at location 31490 (16 Bytes) ; “NOS Version 1.0”

Initialise Interrupt Device Table at location 31507 ; 31507 - 31596 = 0

(max 30 Functions - 3 Bytes each = 90 Bytes)

 Reserve 40 Bytes for the NOS System Stack at location 31597

 Install the Critical Error Handler at location 31636 ; See later for further details

 Install the Interrupt Processing Subroutine for IM1 ; See later for further details

 executed via an RST 38H instruction.

 ; Load the remaining NOS System Components

 EXECUTE[MEMORY] ; Install the Memory Manager

 EXECUTE[PROCMAN] ; Install the Process Manager

 EXECUTE[SCRNMAN] ; Install the Screen Manager

 EXECUTE[DISKMAN] ; Install the Disk Manager

 EXECUTE[PRINTMAN] ; Install the Printer Manager

 Call SYS Interpreter [CONFIG] ; Read the CONFIG file line by line and

 ; perform the specified commands

 EXECUTE[COMMAND] ; Install the Command Line Processor

 Call Batch Interpreter[AUTOEXEC] ; Read the Autoexec file line by line and

 ; perform the specified commands.

 Enable Interrupts

End Program ‘Boot’ ; Return control to the User (NOS Installed)

Page 5 New Operating System 1.0

The System Information Frame (SIF)

This is an area of memory which contains all the important parameters (offsets) needed by the system to handle the multi-processing

and the communication between processes and NOS. The definition of SIF will continue to change as we add further information as

NOS expands. Once an offset has been declared in SIF, it will not be removed. Also, the location of SIF must never relocate and is

fixed at location 31465 decimal (7AE9H). This way backwards compatibility will be retained so that software written for NOS version

1.0 will still run under a future version without change.

The current definition of SIF is as follows:-

Offset

of Bytes Description

0 2 Size of SIF

2 2 NOS Version Description Pointer

4 1 High Order NOS Version

5 1 Low Order NOS Version

6 2 Base System Stack Pointer

8 2 Top System Stack Pointer

10 2 Current System Stack Pointer

12 2 Reserved

14 1 Reserved

15 2 IM1 Interrupt Device Table

17 1 No. entries in IM1 Interrupt Device Table

18 2 Reserved

20 1 Reserved

21 1 System Flags:

Bit 0 = Stack In Use Indicator

 0 - SP is the Current Process Stack

 1 - SP is the System Stack

Bits 1 & 2 = Interrupt Processing Indicator

 00 - No Interrupt is being Processed

 01 - Reserved

 10 - IM1 Interrupt is being Processed

 11 - Reserved

Bits 3 & 4 = Stack Request after Interrupt

 00 - No Request

 01 - Request System Stack after Interrupt

 10 - Request Current Process Stack after Interrupt

 11 - Reserved

Bits 5 - 7 = Reserved for future expansion

 Set to Zero (000)

22 1 Last Process ID. (Total No. of Processes currently loaded)

23 2 Address of the Critical Error Handler

The Critical Error Handler

The Critical Error Handler is just that, a centralised error checking routine which given an error code produces a message and then

either returns control to allow the calling routine to cleanup as best it can, or it terminates the parent process if a major error has

occured. For a full list of error messages refer to Appendix ??.

Page 6 New Operating System 1.0

The IM1 Interrupt Processing Subroutine

The standard VZ hardware configuration is such that only the IM1 type interrupts of the Z80 CPU have been enabled. This is the

simplest of the three types of interrupts the Z80 permits. When an interrupt occurs an RST 38H instruction is executed which in turn

calls a small service routine. Currently, the only interrupting device on a standard VZ is the Graphics Controller Chip which interrupts

50 times every second. The current interrupt service routine only looks after screen updates, such as flashing the cursor, displaying

messages and looking after the background colours.

Over the years a lot of software and hardware enhancements have meant that the standard service routine was replaced with a

customised device specific version. This was a good solution until the time came where more than one add-on was required at any one

time. The Interrupt Service routine installed by NOS will attempt to overcome this problem.

For the initial version of NOS we will only be considering IM1 type interrupts. It is most likely that this will change in a future

version, but hardware enhancements will also be required.

In NOS there is a table which contains a list of functions, in priority order, which are to be called every time an interrupt ocurrs. The

address of this table is stored at offset 15 of SIF and is known as the IM1 Device Table. For this version of NOS there is a limit of 30

functions which can be called every time an interrupt occurs. Each function looks after a specific device and whenever called polls the

device to see if any events occurred since the last interrupt. The one major drawback to this method is that if we do not poll a device

often enough we will loose information. The only way to resolve this is via some form of hardware enhancement which is beyond the

scope of the initial version.

Questions:

How do we handle interrupts of devices which require different polling priorities

there is a limit on the amount of time we can spend servicing interrupts before the system slows down.

Page 7 New Operating System 1.0

The Memory Manager

The Memory Manager controls the allocation/distribution of memory for use by all programs.

Memory on the VZ can be defined as one of four types:-

1. System Memory

2. Extended Memory

3. Expanded Memory

4. Screen Memory

All but the last type of memory is looked after by the Memory Manager. The minimum expected configuration is System memory only,

although this will severely restrict the user and negate any of the benefits of NOS.

System Memory

This is the area of memory between 7AE9H and BFFFH, and is mandatory. Applications should not use this memory unless absolutely

necessary. This memory is used by NOS for loading Device Drivers, lookup tables, file control blocks etc.

To access System Memory, the following primitives are available:

i) Allocate_System - This marks a block of system memory as being used and returns a pointer to it.

ii) ReAllocate_System - This increases the size of an allocated block of system memory and returns a pointer to it.

iii) Release_System - This releases a block of allocated system memory.

iv) TotalFree_System - The returns the amount of unused system memory.

v) LargestFree_System - The returns the size of the largest unused block of system memory.

vi) SmallestFree_System - The returns the size of the smallest unused block of system memory.

vii) FirstFree_System - The returns the size of the first unused block of system memory.

viii) NextFree_System - The returns the size of the next unused block of system memory.

Extended Memory

This is the area of memory starting at C000H. Depending upon the hardware configuration, the end address can vary. The memory in

this region may also be bank switched.

To access extended memory, the following primitives have been provided:

i) Allocate_Global - This marks a block of extended memory as being used and returns a pointer to it.

ii) ReAllocate_Global - This increases the size of an allocated block of extended memory and returns a pointer to it.

iii) Release_Global - This releases a block of allocated extended memory.

iv) TotalFree_Global - This returns the amount of unused extended memory.

v) LargestFree_Global - This returns the size of the largest unused block of extended memory.

vi) SmallestFree_Global - This returns the size of the smallest unused block of extended memory.

vii) FirstFree_Global - This returns the size of the first unused block of extended memory.

viii) NextFree_Global - This returns the size of the next unused block of extended memory.

ix) NoBanks_Global - This returns the number of extended memory banks.

x) TotalMem_Global - This returns the total amount of extended memory.

Please note that these primitives return a three byte (24 bit) pointer. The following additional primitives have been provided to store

and retrieve data from extended memory:

i) StoreByte_Global - This stores a byte of data in global extended memory.

ii) ReadByte_Global - This reads a byte of data from global extended memory.

iii) StoreBlock_Global - This transfers a block of data to global extended memory.

iv) ReadBlock_Global - This reads a block of data from global extended memory.

v) TransferBlock_Global - This transfers a block of data from one area of global extended memory to another.

Page 8 New Operating System 1.0

The Process Manager

Page 9 New Operating System 1.0

The Process Information Frame (PIF)

The current definition of PIF is as follows:-

Offset

of Bytes Description

0 2 Size of PIF

2 2 Start Address

4 1 Bank No

5 1 Process ID

6 2 Base Process Stack Pointer

8 2 Top Process Stack Pointer

10 2 Current Process Stack Pointer

12 2 Function Table Pointer

14 1 Number of External Functions

; Inter-Process Communication Call/Results

15 1 Called Process No

16 1 Sub Function No

17 1 ES: Call Error Status/Single Return Value

18 2 RV1: Double Byte Return Value

20 2 RV2: Double Byte Return Value

Page 10 New Operating System 1.0

Appendix ? - Error Messages produced by the Critical Error Handler

Error Code

Terminate/Suppress Reason for Error Error Message

0 - No Error -

1 Suppress Invalid Process ID A Requested Process is not available

2 Suppress Invalid Function Call A Requested Function is not available

3 Terminate Stack Underflow Error A Stack Error has Occurred.Application is terminating

4 Terminate Stack Overflow Error A Stack Error has Occurred.Application is terminating

NB: The second column indicates that the parent process can suppress these error messages and resolve the problem

 programatically.

Page 11 New Operating System 1.0

Appendix ? - Standard Process Identifier’s

Process ID

Description

; NOS Services

0 Reserved

1 Memory Manager

2 Process Manager

3 Screen Manager (Video I/O)

4 Disk Manager

5 Print Manager

; Device Drivers - Standard Hardware

6 Keyboard Input/Output

7 Video Input/Output

8 Cassette Input/Output

9 Speaker Output

; Device Drivers - Standard Hardware Extensions

10 Parallel Printer Output

11 Joystick Input

12 Disk Input/Output

; Device Drivers - Non-standard Hardware Extensions Support

13 Mouse Input

14 Real-Time Clock Input/Output

15 Serial Input/Output

; Device Drivers - Logical Devices

16 Standard Input

17 Standard Output

18 Standard Printer

19 Standard Error

;Reserved

20 - 24 Reserved for Future Expansion.

; Process Manager allocates from 25 to 255

Page 12 New Operating System 1.0

Appendix ? - Useful Definitions

To make the code easier to read, the following definitions have be created:

SIF EQU 31465

SYSTEM_FLAGS EQU SIF + 19

PROCESS_LOOKUP_TABLE EQU SIF + 23

SYSTEM_STACK EQU SIF + 10

LAST_PROCESS_ID EQU SIF + 22

Page 13 New Operating System 1.0

Appendix ?? - The IM1 Interrupt Handler

Upon Entry: Stack contains all registers except IY & IX.

INTR: LD A, (SYSTEM_FLAGS) ; Indicate that we are servicing IM1 Interrupts.

 AND 11111101b ; Preserve all bits other than bits 1 & 2.

 LD (SYSTEM_FLAGS), A

 POP HL ; Remove the return address to the ROM routine from the stack.

 PUSH IY ; Save the Current Process Frame Pointer.

 PUSH IX ; Save the IX Register.

 BIT 0,A ; Check if System Stack is already in use.

 JR NZ, INT1

 LD IY, SIF ; Set Frame Pointer to SIF.

INT1: LD HL, -20 ; Recalculate the Current Stack Pointer allowing for the

 ADD HL, SP ; registers already placed there by the ROM routine.

 LD (IY + 10), L

 LD (IY + 11), H ; HL = Current Stack Pointer, could be the Process Stack.

; SP is unaffected.

 CALL VSTACK ; Validate that the stack integrity is OK.

 |

 |

 SERVICE INTERRUPTS ; Refer Appendix ?? for further Information.

 |

 |

 POP IX ; Restore the IX Register.

 POP IY ; Restore the Current Process Frame Pointer.

 POP HL ; Restore registers placed on the stack by the ROM routine.

 POP DE

 POP BC

 LD A, (SYSTEM_FLAGS) ; Reload the System flags.

 BIT 3, A ; Test for System Stack request.

 JR NZ, INT3

 BIT 4, A ; Test for Process Stack request.

 JR NZ, INT4

INT2: AND 11100001b ; Reset: Interrupt Indicator & Stack request.

 LD (SYSTEM_FLAGS), A

 POP AF

 EI

 RETI

INT3: BIT 0, A ; Test if System Stack already in use

 JR NZ, INT2 ; Goto INT2 if so.

 AND 11100001b ; Reset: Interrupt Indicator & Stack request.

 SET 0, A ; Indicate SP = System Stack.

 LD (SYSTEM_FLAGS), A

 POP AF ; Restore Registers placed there by ROM routine.

Page 14 New Operating System 1.0

; Because we are messing around with the stack pointer we cannot rely upon it.

 LD (SAVE_REG1), HL ; Save the current value of HL

 POP HL ; HL = Commencement Address when returning from interrupt.

; This is not the return address to the ROM routine as this has

; already been removed.

 LD SP, (SIF + 10) ; SP = Current System Stack Pointer.

 PUSH HL ; Restore the Commencement Address

 LD HL, (SAVE_REG1) ; Restore value of HL

 EI

 RETI

INT4: BIT 0, A ; Test if System Stack in use

 JR Z, INT2 ; Goto INT2 if not.

 AND 11100001b ; Reset: Interrupt Indicator & Stack request.

 RES 0, A ; Indicate SP = Current Process Stack.

 LD (SYSTEM_FLAGS), A

 POP AF ; Restore Registers placed there by ROM routine.

; Because we are messing around with the stack pointer we cannot rely upon it.

 LD (SAVE_REG1), HL ; Save the current value of HL

 POP HL ; HL = Commencement Address when returning from interrupt.

; This is not the return address to the ROM routine as this has

; already been removed.

 LD (SAVE_REG2), HL ; Save it

 LD L, (IY + 10) ; HL = Current Process Stack Pointer

 LD H, (IY + 11)

 LD SP, HL ; SP = Current Process Stack Pointer

 LD HL, (SAVE_REG2)

 PUSH HL ; Restore Commencement Address

 LD HL, (SAVE_REG1) ; Restore value of HL

 EI

 RETI

; These storage areas are known only to the Interrupt Service Routine.

SAVE_REG1: DEFS 2

SAVE_REG2: DEFS 2

Page 15 New Operating System 1.0

Appendix ?? - Stack Validation Routine

Upon Entry: HL = Stack Pointer.

Upon Exit: HL register altered,

 Flags register altered,

 All other registers preverved.

VSTACK: PUSH DE

 LD E, (IY + 6)

 LD D, (IY + 7) ; DE = Base of Stack.

 EX DE, HL ; DE = Current Stack Pointer.

; HL = Base of Stack.

 OR A ; Clear carry flag.

 SBC HL, DE

 JR ?, VSTACK_UFLOW ; Stack Underflow Error.

 LD L, (IY + 8)

 LD H, (IY + 9) ; HL = Top of Stack.

 OR A

 EX DE, HL ; HL = Current Stack Pointer.

; DE = Top of Stack.

 SBC HL, DE

 JR ?, VSTACK_OFLOW ; Stack Overflow Error.

 OR A ; Clear carry flag.

 POP DE

 RET

VSTACK_UFLOW: LD E, A ; Preserve the A register.

 LD A, 3

 CALL CRITICAL_ERRORHANDLER

 LD A, E ; Restore the A register.

 POP DE

 RET

VSTACK_OFLOW: LD E, A ; Preserve the A register.

 LD A, 4

 CALL CRITICAL_ERRORHANDLER

 LD A, E ; Restore the A register.

 POP DE

 RET

Page 16 New Operating System 1.0

Appendix ?? - Inter-Process Function Call Routine (RST 30H)

Upon Entry: IY = Current Process PIF.

Upon Exit: IY = Current Process PIF.

All other registers destroyed.

IP_CALL: LD A, (SYSTEM_FLAGS) ; Get the current System Flags.

 BIT 1, A ; Is the call occurring during interrupt processing.

 JR NZ, IP_CALL1 ; Goto IP_CALL1 if so.

 HALT ; Wait for an interrupt. This serves two purposes:

;

; i) Yields to O/S allowing background

 processes to occur.

; ii) Ensures stack integrity.

IP_CALL1: LD H, 0

 LD L, (IY + 13) ; HL = Called Process No.

 LD A, (LAST_PROCESS_ID) ; A = ID of last Process loaded.

 CP L ; Check if Called Process No is valid

 LD A, 1 ; Set Errorflag.

 JP ?, CRITICAL_ERRORHANDLER ; “Invalid Process ID”.

 ADD HL, HL ; *2

 PUSH HL

 ADD HL, HL ; *2 (*4)

 ADD HL, HL ; *2 (*8)

 POP DE

 ADD HL, DE ; (*10)

 ADD HL, HL ; *2 (*20)

 EX DE, HL ; DE = Table Offset

 LD IX, (TABLE_BASE_ADDRESS)

 ADD IX, DE ; IX = Pointer to Called Process PIF.

 LD E, (IX + 10)

 LD D, (IX + 11) ; DE = Function Table Pointer.

 LD A, D ; Check that the Process ID is valid.

 OR E

 JP Z, CRITICAL_ERRORHANDLER

 LD A, (IX + 12) ; A = No of available functions.

 LD L, (IY + 14) ; L = Function No.

 CP L ; Compare them.

 LD A, 2

 JP ?, CRITICAL_ERRORHANDLER ; “Invalid Function Call”.

 XOR A ; A = 0, carry flag cleared.

 SLA L

 RLA

 LD H, A

 ADD HL, DE ; HL = Table Address of function.

 LD A, (SYSTEM_FLAGS)

 BIT 0, A ; Check if System stack in use.

 JR NZ, IP_CALL3 ; Goto IP_CALL3 if not.

Page 17 New Operating System 1.0

; System Stack is not in use.

 BIT 1, A ; Check if interrupt being processed.

 JR Z, IP_CALL2 ; Goto IP_CALL2 if not.

; Currently Processing Interrupts.

 EX DE, HL ; Save Table Address in DE

 LD HL, 0

 ADD HL, SP ; HL = Current Stack Pointer

 LD (IY + 8), L ; Save current Stack pointer.

 LD (IY + 9), H

 CALL VSTACK ; Validate that the stack integrity is OK.

 EX DE, HL ; HL = Table address of Function.

 LD SP, (SYSTEM_STACK) ; Set the Stack Pointer to the System Stack.

 SET 0, A

 LD (SYSTEM_FLAGS), A ; Indicate System Stack in use.

 JR IP_CALL3 ; GOTO IP_CALL3

IP_CALL2: SET 2, A

 LD (SYSTEM_FLAGS), A ; Request System stack on next interrupt.

 HALT ; Wait for an interrupt.

IP_CALL3: LD A, (IX + 2) ; A = Bank of Called Process.

 CALL BANK_SWITCH ; = OUT (7FH), A

 LD E, (HL)

 INC HL

 LD D, (HL) ; DE = Function Address.

 PUSH IX ; Save Called Process PIF.

 EX (SP), IY ; Exchange it with current Process PIF.

 LD A, (SYSTEM_FLAGS)

 BIT 1, A ; Check if interrupt being processed.

 JR Z, IP_CALL4 ; Goto IP_CALL4 if not.

; Currently Processing Interrupts.

 SET 0, A ; Indicate Process Stack in use.

 LD (SYSTEM_FLAGS), A

 LD L, (IY + 8)

 LD H, (IY + 9) ; HL = Called Process Stack Pointer.

 LD SP, HL ; SP = Called Process Stack Pointer.

 JR IP_CALL5

IP_CALL4: SET 3, A

 LD (SYSTEM_FLAGS), A ; Request current Process Stack on next interrupt.

 HALT ; Wait for an interrupt.

IP_CALL5: LD HL, (CLEANUP_ADDRESS)

 PUSH HL

 EX DE, HL

 JP (HL) ; Execute Function.

Page 18 New Operating System 1.0

